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We propose a microscopic approach to the study of phase transitions in fluid
mixtures. It is based on the collective variables method with a reference system.
The problem of definition of the order parameter in a two-component fluid
system is considered in detail. This system is described with two sets of collective
variables: gkF and tkF . It is shown that the CV connected with the order parameter
is gkF=0 in the case of a gas–liquid critical point as well as in the case of a
mixing–demixing phase transition. The relations between the microscopic
parameters, temperature, density and concentration which determine the par-
ticular form of g0 for each of these phenomena are obtained. Based on these
results we will be able to construct an effective Ginsburg–Landau–Wilson
Hamiltonian.
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1. INTRODUCTION

Binary mixtures in contrast to their constituent components exhibit a
variety of phase behaviour. In particular, such systems can demonstrate
three different types of two-phase equilibrium: gas–liquid, liquid–liquid and
gas–gas as well as continuous transitions between gas–liquid and mixing–
demixing (liquid–liquid or gas–gas) critical phenomena. (1, 2) Revealing the
microscopic mechanism of such intriguing behaviour is an actual and
important task.

During the last decade this problem has been intensively studied by
means of integral equation methods. (3–11) However, this approach, although
reproduces different phase diagram types by varying the microscopic



parameters, gives only a qualitative picture of the phenomenon under con-
sideration.

Of special interest are refs. 12–16 devoted to the study of both the
universal and non-universal properties of fluids. They are based on the
previously proposed approach to the study of the gas–liquid critical point in
a one-component fluid, namely, the hierarchical reference theory (HRT). (17)

On the microscopic Hamiltonian grounds, the HRT develops the renor-
malization group (RG) structure near a critical point.

Another microscopic approach to the study of phase transitions was
proposed in the late eighties. First it was applied to a 3D Ising model (18)

and then was developed for a simple fluid near the gas–liquid critical
point. (19–21) This theory has its origin in the approach based on a functional
representation of a partition function in the collective variables (CV)
space. (22, 23) Its particular feature is a choice of the phase space in which the
system is considered. This phase space is formed by a set of CV and
contains a variable connected with the order parameter. The proposed
approach allows one to determine, on microscopic grounds, the explicit
form of an effective Ginzburg–Landau–Wilson Hamiltonian and then to
integrate the partition function in the neighborhood of the phase transition
point taking into account the renormalization group symmetry. As a result,
non-classical critical exponents and analytical expressions for thermody-
namic functions are obtained. (18, 21) More recently this theory has been
developed for a binary fluid mixture. (24–26).

In this paper, on the basis of the method of CV with a reference
system (RS), (24, 25) we address an important task, namely, the definition of
the order parameter of a binary fluid mixture. The next stage of our
study will be constructing an effective Ginzburg–Landau–Wilson (GLW)
Hamiltonian with respect to CV which include a variable corresponding to
the order parameter. To this end we will follow the scenario proposed in
ref. 25 for a symmetrical mixture. This task will be considered elsewhere.

The question of the physical nature of the order parameter in binary
fluid mixtures has been discussed until recently from the point of view of both
the phenomenological theory (27, 28) and the microscopic approach. (10, 13, 14, 25)

Nowadays the commonly accepted idea is that both the gas–liquid and
mixing–demixing phase transitions are accompanied by the total density
fluctuations as well as by the relative density fluctuations. In the real mix-
tures the contribution from each type of the fluctuation processes changes
along the critical curve. The evaluation of such contributions at each point
of the critical curve is essential to determine the order parameter and to
understand the phase transition character in the mixture. Below we show
that within the framework of our approach this problem has a consistent
and clear solution.
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The layout of the paper is as follows. We give a functional representa-
tion of the grand partition function of a two-component continuous system
in Section 2. Section 3 is devoted to the definition of the order parameter in
a binary mixture. In this section we show that the order parameter can be
found either on the basis of microscopic properties of the system or from
thermodynamic relations. In the former case, we derive an explicit equation
for the angle showing the direction of strong fluctuations and, in the latter
one, the same formulas as in ref. 14 are obtained. We present our results in
Figs. 1–8. Section 4 contains some concluding remarks.

2. FUNCTIONAL REPRESENTATION OF A GRAND PARTITION

FUNCTION OF A MULTI-COMPONENT CONTINUOUS SYSTEM.

A BINARY MIXTURE

Let us consider a classical multi-component continuous system of
interacting particles consisting of Na1

particles of species a1, Na2
particles

of species a2,... and Nam particles of species am. The system is in volume V
at temperature T.

Let us assume that an interaction in the system has a pairwise additive
character. The interaction potential between particle c at rFi and particle d

at rFj may be presented as a sum of two terms:

Ucd(rij)=kcd(rij)+fcd(rij),

where kcd(r) is a potential of a short-range repulsion that can be chosen as
an interaction between the two hard spheres scc and sdd. fcd(r) is an attrac-
tive part of the potential which dominates at large distances.

Let us start with a grand partition function

X= C
.

Na1=0
C
.

Na2=0
· · · C

.

Nam=0
D
am

c=a1

zNcc
Nc!

F (dC) exp 5−b

2
C
cd

C
ij
Ucd(rij)6 , (2.1)

where (dC)=<c dCNc , dCNc=drF c1 drF
c
2 · · · drF

c
Nc is an element of the config-

urational space of the cth species; zc is the fugacity of the cth
species: zc=exp(bm −c), m −c=mc+b−1 ln[(2pmcb−1)3/2/h3]; b= 1

kBT
, kB is the

Boltzmann constant, T is temperature; mc is mass of the cth species, h is the
Planck constant. m −c is determined from

“ ln X

“bm −c
=ONcP,

where ONcP is the average number of the cth species.
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Further consideration of the problem is done in the extended phase
space: in the phase space of the Cartesian coordinates of the particles and
in the CV phase space. An interaction connected with the repulsion
(potential kcd(r)) is considered in the space of the Cartesian coordinates of
the particles. We call this multi-component hard-spheres system a reference
system (RS). The thermodynamic and structural properties of the RS are
assumed to be known. Although it is known that mixtures with only
repulsive interactions might undergo a phase transition, (29) we assume that
in the region of temperatures, concentrations and densities we are inter-
ested in, the thermodynamic functions of the RS remain analytic. The
interaction connected with an attraction (potential fcd(r)) is considered in
the CV space. The phase space overflow is cancelled by introduction of
a Jacobian of the transition to CV. The contribution of the short-range
forces to the long-range interaction screening is ensured by averaging this
Jacobian over the RS.

Let us introduce the grand partition function of the RS

X0= C
.

Na1=0
C
.

Na2=0
· · · C

.

Nam=0
D
am

c=a1

exp(bmc0Nc)
Nc!

F (dC) exp 5−b

2
C
cd

C
ij

kcd(rij)6 ,
(2.2)

where mc0 is the chemical potential of the cth species in the RS.
Then the grand partition function (2.1) can be written as: (24, 25)

X=X0X1, (2.3)

where X0 is given in (2.2).
The part of the grand partition function which is defined in the CV

phase space has the form of a functional integral:

X1=F (dr) exp 5b C
c

mc1r0, c−
b

2V
C
cd

C
kF

f̃cd(k) rkF, cr−kF, d6

×J(ra1 , ra2 ,..., ram ). (2.4)

Here,

(1) f̃cd(k) is a Fourier transform of the attractive potential fcd(r).
ki=

2pni
L with L=V1/3, ki=kx, ky, kz, and ni=0, ±1, ±2,..., the ther-

modynamic limit LQ. is assumed. The function f̃cd(k) satisfies the fol-
lowing requirements: f̃cd(k) is negative for the small values of kF and
limkF Q. f̃cd(k)=0. The behaviour of fcd(r) in the region of the core r < scd
should be determined from the conditions of optimal separation of the
interaction.
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(2) mc1 is a part of the chemical potential of the cth species

mc1=m −c−mc0+
b

2V
C
kF

f̃cc(k)

and is determined from the equation

“ ln X1

“bmc1
=ONcP.

(3) J(r)=J(ra1 , ra2 ,..., ram ) is the Jacobian of the transition to CV
averaged on the RS:

J(r)=
1

X0
C
.

Na1=0
C
.

Na2=0
· · · C

.

Nam=0
D
am

c=a1

exp(bmc0Nc)
Nc!

F (dC)

× exp 5−b

2
C
cd

C
ij

kcd(rij)6 D
am

c=a1

d(r0, c− r̂Nc (0))

×DŒ
kF ] 0

d(rkF, c− r̂Nc (kF)), (2.5)

where r̂Nc (kF) is a Fourier transform of the particle number density operator

r̂Nc (kF)=C
Nc

j=1
exp(−ikFrF cj ),

d( · · · ) is the Dirac delta function. The prime means that the product over kF
is performed in the upper semi-space.

rkF, c=rc
kF, c−ir

s
kF, c are collective variables of the cth species, where the

indices c and s denote the real part and the coefficient of the imaginary
part of rkF, c. Each rc

kF, c and r s
kF, c takes all the real values from −. to +..

(dr) is a volume element of the CV phase space:

(dr)=D
c

dr0, c DŒ
kF ] 0

drc
kF, c dr s

kF, c.

rkF, c is related to r̂Nc (kF) by means of the relations

r̂c
Nc (kF)=F rc

kF, cd(r
c
kF, c− r̂c

Nc (kF)) drc
kF, c,

r̂ s
Nc (kF)=F r s

kF, cd(r
s
kF, c− r̂ s

Nc (kF)) dr s
kF, c.
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First J(r) was defined for the system of charged particles (22) and then dis-
cussed more extensively in ref. 23 (and also in ref. 18–21, 24, 25).

Substituting into (2.5) the explicit forms for delta functions, we obtain

J(r)=F J(n)D
c

exp 1 i2p C
kF

nkF, crkF, c 2 (dn),

where the variables nkF, c are conjugate to the CV rkF, c:

nkF, c=
1
2 (n

c
kF, c+in

s
kF, c), if kF ] 0

and

(dn)=D
c

dn0, c DŒ
kF ] 0

dnckF, c dn skF, c.

J(n) is a Fourier transform of the Jacobian of the transition J(r)

J(n)=
1

X0
C
.

Na1=0
C
.

Na2=0
· · · C

.

Nam=0
D
am

c=a1

exp(bmc0Nc)
Nc!

F (dC)

× exp 5−b

2
C
cd

C
ij

kcd(rij)6D
c, kF

exp(−i2pnkF, cr̂Nc (kF)). (2.6)

Performing in (2.6) integration over the phase space of the Cartesian
coordinates of the particles and summing over Na1

,..., Nam , we can present
J(r) in the form:

J(r)=F (dn) D
am

c=a1

exp 5i2p C
kF

nkF, crkF, c6 exp 5 C
n \ 1

(−i2p)n

n!

× C
c1 · · · cn

C
kF1 · · · kFn

Mc1 · · · cn
(kF1,..., kFn) nkF1, c1 · · · nkFn, cn

6 . (2.7)

The nth cumulantMc1 · · · cn
(kF1,..., kFn) is determined from

Mc1 · · · cn
(kF1,..., kFn)=

“
n ln J(n)

“nkF1, c1“nkF2, c2 · · ·“nkFn, cn
:
nkFi, ci

=0

and is connected with Sc1 · · · cn (k1,..., kn), the n-particle partial structure factor
of the RS, by means of the relation

Mc1 · · · cn
(kF1,..., kFn)=n

`Nc1 · · ·Ncn Sc1 · · · cn (k1,..., kn) dkF1+· · ·+kFn ,

where dkF1+· · ·+kFn is a Kronecker symbol.
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In general, the dependence of Mc1 · · · cn
(kF1,..., kFn) on wave vectors

kF1,..., kFn is complicated. Since we are interested in the critical properties,
the small-kF expansion of the cumulants can be considered. Hereafter we
shall replace Mc1 · · · cn

(kF1,..., kFn) by their values in the long-wavelength limit
Mc1 · · · cn

(0,..., 0). We have a recurrence formula forMc1 · · · cn
(0,..., 0): (30)

Mc1 · · · cn
(0,...)=|B|−1

× :1
“Mc1 · · · cn−1

(0,...)
“Ncn
2
V, T, {NcnŒ}

1“Mc1 · · · cn−1
(0,...)

“{NcnŒ}
2
V, T, Ncn

1“{mcnŒ}
“Ncn
2
V, T, {NcnŒ}

1 “{mcnŒ}
“{NcnŒ}
2
V, T, Ncn

: ,
where {mcnŒ} denotes a column-vector

R mc1
x

mcn−1

S ,

which does not include the element mcn , “ · · · /“{NcnŒ} denotes a row-vector

1“ · · ·
“Nc1

· · ·
“ · · ·
“Ncn−1
2 ,

which does not include “ · · ·
“Ncn

. B is a square (m×m) matrix, the elements of
which are

Bc1c2=
1 “bmc1
“ONc2P
2
V, T, Nck

.

Two-particle cumulants Mcd(k) can be found, for example, in the Percus–
Yevick approximation using the analytic solution obtained for a hard
sphere mixture. (32)

Now let us consider a two-component system consisting of Na particles
of species a and Nb particles of species b (c1, c2,..., cn=a, b in (2.3)–(2.7)).
Having passed in (2.4) to CV rkF and ckF by means of the orthogonal linear
transformation

rkF=
`2

2
(rkF, a+rkF, b), ckF=

`2

2
(rkF, a−rkF, b), (2.8)
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we obtain for X1:

X1=F (dr)(dc) exp 5bm+1 r0+bm−
1 c0−

b

2V
C
kF
[Ṽ(k) rkF r−kF

+W̃(k) ckFc−kF+2Ũ(k) rkFc−kF]6 J(r, c). (2.9)

Here the following notations are introduced:
rkF and ckF are CV connected with the total density fluctuation modes

and the relative density (or concentration) fluctuation ones respectively.
Functions m+1 and m−

1 have the forms:

m+1=
`2

2
(ma

1+mb
1), m−

1=
`2

2
(ma

1 −mb
1) (2.10)

and are determined from the equations

“ ln X1

“bm+1
=ONP, (2.11)

“ ln X1

“bm−
1

=ONaP−ONbP. (2.12)

Functions Ṽ(k), W̃(k) and Ũ(k) are combinations of Fourier transforms of
the initial interaction potentials f̃cd(k):

Ṽ(k)=(f̃aa(k)+f̃bb(k)+2f̃ab(k))/2,

W̃(k)=(f̃aa(k)+f̃bb(k)−2f̃ab(k))/2, (2.13)

Ũ(k)=(f̃aa(k)− f̃bb(k))/2.

J(r, c)=F (dw)(dc) exp 5i2p C
kF
(wk rk+ckck)6 J(w, c), (2.14)

J(w, c)=exp 5 C
n \ 1

C
in \ 0

(−i2p)n

n!
C

kF1 · · · kFn

M (in)
n (0,..., 0)

× ckF1 · · · ckFin wkFin+1
· · ·wkFn
6 , (2.15)
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where

wkF=
`2

2
(nkF, a+nkF, b),

ckF=
`2

2
(nkF, a− nkF, b).

Index in indicates the number of variables ckF in the cumulant expan-
sion (2.15). Cumulants M(in)

n are expressed as linear combinations of
the partial cumulants Mc1 · · · cn

(see (2.7)) and are presented for n [ 4 in
Appendix A.

Formulas (2.9)–(2.15) are the initial formulas in our study of phase
transitions in binary fluids.

3. THE ORDER PARAMETER IN A BINARY MIXTURE

In order to derive the effective GLW Hamiltonian we should first find
the CV connected with the order parameter. To this end we restrict our-
selves to the consideration of the Gaussian approximation of functional
integral (2.9)–(2.15) by setting n=2 in (2.14)–(2.15). This truncation, also
known as the random-phase approximation, assumes that fluctuation con-
tributions to the free energy are small. While this approximation yields the
classical critical behaviour, it provides the correct qualitative picture of the
phenomenon under consideration. As we will see below, it is successful in
defining the order parameter and, hence, in revealing the phase transition
mechanism in binary fluids.

As a result of integrating over variables ck and wk in (2.14)–(2.15),
X1 can be rewritten as

XG
1=

1
2p

DŒ
kF

1
p

1

`D(k)
F (dr)(dc) exp 5r0(bm+1+t1/D)

+c0(bm−
1+t2/D)−(M(0)

1 t1+M
(1)
1 t2)

−
1
2
C
kF
[rkF r−kFA11(k)+ckFc−kFA22(k)+2rkFc−kFA12(k)]6 , (3.1)

where

t1=M(2)
2 M

(0)
1 −M

(1)
2 M

(1)
1 , t2=M(0)

2 M
(0)
1 −M

(1)
2 M

(0)
1
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A11(k)=
1
2
1b
V
Ṽ(k)+

M (2)
2

D
2

A22(k)=
1
2
1b
V
W̃(k)+

M (0)
2

D
2 (3.2)

A12(k)=
1
2
1b
V
Ũ(k)−

M (1)
2

D
2

D=M (0)
2 M

(2)
2 −(M

(1)
2 )

2.

It is easily seen that the inverse of matrix A where

A=RA11(k) A12(k)
A12(k) A22(k)

S

yields a matrix of structure factors S obtained in the Gaussian approxi-
mation (33)

S=RSrr(k) Src(k)
Src(k) Scc(k)

S .

Here

Srr(k)=Or̂kF r̂−kFP−dkFONa+NbP
2,

Src(k)=Or̂kF ĉ−kFP−dkFONa+NbPONa−NbP,

Scc(k)=OĉkF ĉ−kFP−dkFONa−NbP
2

and

r̂kF=C
Na

i=1
exp(−ikFrF ai )+C

Nb

i=1
exp(−ikFrF bi ),

ĉkF=C
Na

i=1
exp(−ikFrF ai )− C

Nb

i=1
exp(−ikFrF bi ).

In order to determine the phase space of CV connected with the order
parameters we introduce independent collective excitations by diagonaliz-
ing the square form in (3.1) by means of the orthogonal transformation:

rkF=A(k) tkF+B(k) gkF

ckF=C(k) tkF+D(k) gkF
(3.3)
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The explicit forms for coefficients A(k), B(k), C(k) and D(k) are given in
Appendix B.

As a result, we have

XG
1=

1
2p

DŒ
kF

1
p

1

`D(k)
F (dg)(dt) exp 5g0(AM1+CM2)

+t0(BM1+DM2)−(M
(0)
1 t1+M

(1)
1 t2)/(D(0))

−
1
2
C
kF
(e1(k) gkFg−kF+e2(k) tkFt−kF)6 ,

where

e1, 2(k)=A11(k)+A22(k) +`(A11(k)−A22(k))2+4A
2
12(k) (3.4)

(the+ and − signs correspond to indices 1 and 2).
One of the quantities (3.4) (or both) tends to zero as the critical tem-

perature is approached at a certain wave vector kF g. Thus, the CV gkFg

(or tkFg) can be identified as the order parameter where wave vector kF g must
correspond to the minimum of one of the functions e1(k) or e2(k) (or both).
These functions depend on temperature, attractive potentials f̃cd(k) and
characteristics of the RS. The RS enters into (3.4) by cumulantsMcd(k).

Coefficients e1(k) and e2(k) were studied both as wave vector functions
at different values of temperature T, density g and concentration x includ-
ing the gas–liquid and mixing–demixing critical points (34) and as tempera-
ture functions at kF=0. (35) The results showed that branch e1(k) became a
critical one, no matter whether the system approached the gas–liquid or
gas–gas demixing critical point. Moreover, e1(k) and e2(k) had the minima
at kF=0. (34)

On the other hand, for Aij(k=0) by AS=1 one can obtain the ther-
modynamic relations: (31)

A11(0)=(rkBToT)−1,

A12(0)=(rkBToT)−1 d̂,

A22(0)=(rkBT)−1 1
“
2G
“x2
2
T, P
+(rkBToT)−1d̂2,

(3.5)

where oT is a compressibility, d̂=r(ua− ub), ui=( “V
“Ni
)T, P, Nj ] i is a partial

volume, x=ONbP/ONa+NbP is a concentration, G is the Gibbs free
energy.
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At either the gas–liquid or mixing–demixing critical point the equality

1“2G
“x2
2
T, P
=0 (3.6)

holds. Substituting (3.5) and (3.6) in (3.4) we also have

e1(k=0) — 0, e2(k=0)=(rkBToT)−1 (1+d̂2).

Hence we can draw the following conclusions:

1. Branch e1(k) is always critical, no matter whether the system
approaches the gas–liquid or mixing–demixing phase transition point.

2. Because e1(k) has the minimum at kF=0, the CV connected with
the order parameter is g0 in the case of the gas–liquid critical point as well
as in the case of the mixing–demixing phase transition. The particular form
of g0 for each of these phenomena can be determined by means of the rela-
tions between the microscopic parameters, temperature, density and con-
centration of the system or by means of the thermodynamic relations.

3. In the plane (r0, c0) we have distinguished two directions: the
direction of strong fluctuations g0 and the direction of weak fluctuations t0.
As a result, we can write the conditions for the binary mixture critical point
in the form:

5“2W
“g20
6
c
=0,

5 “2W
“g0 “t0
6
c
=0,

5“3W
“g30
6
c
=0,

where W=−kT ln X is a grand canonical potential.

Now let us consider the CV gkF=0 which is connected with the direction of
the strong fluctuations of the system in the vicinity of its critical line. From
(3.3) it follows that

t0=A(0) r0+C(0) c0

g0=B(0) r0+D(0) c0,
(3.7)
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On the other hand, (3.7) can be rewritten as

t0=r0 cos h+c0 sin h

g0=−r0 sin h+c0 cos h.
(3.8)

Comparing (3.7) and (3.8) we can determine the rotation angle h of axes g0
and t0 in the (r0, c0) plane from the equation

tan h=
C
A
. (3.9)

Hence, on the basis of (3.9) we can determine the direction of the order
parameter either from the microscopic properties of the system (see (3.2))

Fig. 1. Density-concentration projection of the critical line and direction of the order
parameter of the model binary mixture at a=1.0, q=0.9 and r=0.6. The inset is provided to
illustrate angle j defined in the (r0, c0) plane (see explanation in the text).
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or, by using (3.5), from the thermodynamic relations. In the latter case we
find

tan h=d̂ or cot h=
1
d̂
. (3.10)

Having passed to the angle j=h−p/2 we obtain the same formulas as in
ref. 14:

x cot j=1−rua, r tan j=
“x
“(1/r)

.

We will illustrate below how the direction of the strong fluctuations
calculated with (3.9) changes along the critical curve.

As was noted above, binary fluid mixtures can exhibit complex phase
behaviour and different kinds of critical phenomena. It is convenient to

Fig. 2. Same as Fig. 1 at a=0.9, q=0.9 and r=0.6.
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classify binary phase behaviour on the basis of the types of critical and
three-phase lines present and on the way these intersect. For fluid phase
equilibria, such a classification scheme was proposed by van Konynenburg
and Scott. (36) Solely the mixtures showing critical behaviour according to
class 1 are completely miscible and their critical curves appear to be con-
tinuous lines between the critical point of the pure components. The
remaining five classes display mixing–demixing separation of various kinds.
Except for classes 1 and 2 the phase diagrams do not demonstrate contin-
uous lines between the critical points of the pure components.

In order to illustrate the behaviour of the order parameter we first
consider the three model binary mixtures which consist of the hard spheres
interacting via the attractive potentials fij(r). We are not specifying the
form of fij(r) since we consider a mean-field approximation here. Each of
these systems is characterized by a set of the parameters a, q and r, where
a=saa/sbb is the hard-sphere ratio, sii is the hard-sphere diameter, q=
−f̃bb(0)/|f̃aa(0)| (provided that |f̃aa(0)| > |f̃bb(0)|) is the dimensionless

Fig. 3. Same as Fig. 1 at a=0.9, q=0.9 and r=0.8.
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‘‘like’’ interaction strength and r=−f̃ab(0)/|f̃aa(0)| is the ‘‘unlike’’ interac-
tion strength. As is known (1, 4, 5, 9, 11, 36) the phase diagram of a mixture is
sensitive to the relationship among these parameters. We also consider the
argon–krypton mixture which exhibits phase behaviour of class 1. (37)

We calculate critical curves of the binary fluid mixtures using thermo-
dynamic criteria on the basis of the Helmholtz free energyf, (1, 36)

f2xf2V−f
2
Vx=0 (3.11)

f3xf
2
2V−3fV2xfVxf2V+3f2Vxf

2
Vx−f3Vf2xfVx=0, (3.12)

where

fnVmx=
“
n+mf
“Vn
“xm

and we restrict ourselves to the mean-field approximation for f (see
Appendix C). Equations (3.11) and (3.12) are solved simultaneously by
using (C.1)–(C.3).

First, for each mixture we calculate the critical curve in the (Tg, g, x)
space (see notations for Tg and g in Appendix C). Then, for each set of the

Fig. 4. The dependence of angle j on packing density g and concentration x for the model
binary mixture at a=1.0, q=0.9 and r=0.6. The full line is angle j defined in the (r0, c0)
plane, the dashed lines indicate its projections in planes (j, g), (j, x) and (g, x), respectively.
j is measured in degrees. The (g, x) projection coincides with the (g, x) projection of the
critical line.
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critical parameters Tg
c , gc, xc, we calculate angle h showing the direction

of strong fluctuations in the (r0, c0) plane. The results are presented in
Figs. 1–8.

Figures 1–3 depict the (g, x) projections of the critical lines of the
model binary mixture for the three sets of parameters a, q and r. The
arrows show the direction of strong fluctuations (order parameter) along
the critical curve. The direction corresponds to the angle j=h−p/2 in the
(r0, c0) plane. The figures are obtained by the superposition of the set of
plots, namely, the plot displaying the (g, x) projection of the critical line
and the plots displaying the directions of the order parameter (at the points
of the critical curve) in the (r0, c0) plane. In fact, only parts of the full
phase diagrams are shown in these figures. As one can see in Figs. 1–3,
a change in the hard-sphere ratio a has a more pronounced effect on the
trend of the critical line and, hence, on the behaviour of the order param-
eter than a slight change in the parameter r does. We also plot angle j

versus g and x in Figs. 4–6.
Figure 7 depicts the (g, x) projection of the liquid–gas critical curve

for the argon–krypton mixture. The calculations are performed for the
model mixture of additive hard spheres attracting via the Morse potential

fcd(r)=ecd{exp[−2acd(r−Rcd)]−2 exp[acd(r−Rcd)]}.

Fig. 5. Same as Fig. 4 at a=0.9, q=0.9 and r=0.6.
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Fig. 6. Same as Fig. 4 at a=0.9, q=0.9 and r=0.8.

Fig. 7. Behaviour of the order parameter along the liquid–gas critical curve of the
argon–krypton mixture (density-concentration projection). x is the concentration of argon.
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Parameters of the interaction potentials are taken from ref. 38: eArAr/kB=
118.1K, RArAr=4.13 Å, aArAr=1.253 Å−1, eKrKr/kB=149.0K, RKrKr=
4.49 Å, aKrKr=1.05 Å−1. The ‘‘unlike’’ interaction parameters eArKr, RArKr,
aArKr and the hard sphere diameters sArAr, sKrKr are chosen as: eArKr/kB
=132.7K, RArKr=4.31 Å, aArKr=1.162 Å−1, sArAr=3.58 Å, sKrKr=3.86 Å.
The arrows have the same meaning as above. The direction of the strong
fluctuations changes continuously along the critical curve (from j=45° (at
x=0) to j=−45° (at x=1.0) around the axis r0in the (r0, c0) plane). It
follows from (2.8) that the equalities r0=±c0 hold at the pure component
critical points. The dependence of angle j on g and x is plotted in Fig. 8.
As is seen in Figs. 7 and 8, at the concentration of Ar about 0.7 the fluc-
tuations have a pure density character.

Thus, the proposed approach enables us, on microscopic grounds, to
determine the order parameter at each point along a critical curve and thus
to understand the character of the phase transition in the binary mixture.

Based on the Gaussian distribution (3.1)–(3.2) we have determined the
critical branch and, correspondingly, CV g0 connected with the order
parameter. The purpose of our further study will be calculating the binary
mixture behaviour in the vicinity of its critical points.

Fig. 8. Same as Fig. 4 but for the argon–krypton mixture.
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4. CONCLUSIONS

In this paper we propose a microscopic approach to the study of phase
transitions and critical properties of binary fluid mixtures. The relevant
problem, namely, the definition of the physical nature of the order param-
eter in such systems is considered in detail. We show that within the
framework of our approach this question had a consistent and clear solu-
tion. As a result, we obtain an explicit equation for the determination of
the order parameter direction at each point along a critical curve. We also
confirm the result obtained in ref. 14 which reveals a connection between
the order parameter direction and the thermodynamic characteristics.

Our approach as well as the HRT is based on two notions, namely, the
notion of a reference fluid and the basic RG notion of the gradual inclu-
sion of long-wavelength fluctuations. However, its characteristic feature in
comparison with HRT, is that it allows one to determine, on the micro-
scopic grounds, the explicit form of an effective GLW Hamiltonian and
then to integrate the partition function in the vicinity of the phase transi-
tion point taking into account the RG symmetry. (18, 21)

Having solved the problem of the order parameter we can study the
second important task, namely, the deriving of the effective GLW Hamil-
tonian. For this purpose we will follow the procedure: (25) (1) having passed
from CV rkF and ckF to CV gkF and tkF in (2.9)–(2.15), we will integrate over
variables tkF with the Gaussian density measure; (2) then we will construct
the basic measure (the GLW Hamiltonian) with respect to variables gkF
which includes higher powers of gkF than the second power. As a result, we
will obtain the GLW Hamiltonian the coefficients of which are the known
functions of the microscopic parameters, temperature, concentration and
density.

APPENDIX A

Cumulants M (in)
n (0) with n [ 4 are expressed in terms of the initial

cumulantsMc1...cn
(0,..., 0) (c1,..., cn=a, b) as follows: (25)

M(0)
1 (0)=Ma(0)+Mb(0)=ONP

M (1)
1 (0)=Ma(0)−Mb(0)=ONaP−ONbP

M(0)
2 (0)=Maa(0)+Mbb(0)+2Mab(0)

M(1)
2 (0)=Maa(0)−Mbb(0)

M(2)
2 (0)=Maa(0)+Mbb(0)−2Mab(0)

M(0)
3 (0)=Maaa(0)+Mbbb(0)+3[Maab(0)+Mabb(0)]

M (1)
3 (0)=Maaa(0)−Mbbb(0)+Maab(0)−Mabb(0)
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M (2)
3 (0)=Maaa(0)+Mbbb(0)−Maab(0)−Mabb(0)

M(3)
3 (0)=Maaa(0)−Mbbb(0)−3[Maab(0)−Mabb(0)]

M(0)
4 (0)=Maaaa(0)+Mbbbb(0)+4[Maaab(0)+Mabbb(0)]+6Maabb(0)

M(1)
4 (0)=Maaaa(0)−Mbbbb(0)+2[Maaab(0)−Mabbb(0)]

M(2)
4 (0)=Maaaa(0)+Mbbbb(0)−2Maabb(0)

M(3)
4 (0)=Maaaa(0)−Mbbbb(0)−2[Maaab(0)−Mabbb(0)]

M(4)
4 (0)=Maaaa(0)+Mbbbb(0)−4[Maaab(0)+Mabbb(0)]+6Maabb(0).

The same expressions hold at kFi ] 0.

APPENDIX B

Coefficients A(k), B(k), C(k) and D(k) have the forms:

A(k)=
a1

`1+a21
, B(k)=

a2

`1+a22
,

C(k)=
1

`1+a21
, D(k)=

1

`1+a22
,

where

a1, 2=−
A22−A11 +`(A11−A22)2+4A

2
12

2A12
.

APPENDIX C

The Helmholtz free energy of a binary mixture in the mean field
approximation can be written as

f=fid+fref+fattr, (C.1)

where fid is a free energy of a binary mixture of ideal gases, fref is a free
energy of a binary mixture of hard spheres: (39)
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fref=Fref/ONP kBT

=−1.5(1−y1+y2+y3)+(3y2+2y3)(1−g)−1

+1.5(1−y1−y2−y3/3)(1−g)−2+(y3−1) ln(1−g), (C.2)

y1=D12
1+a

`a
, y2=D12

gaa+gb

`a g
,

y3=
1
g2
(g2/3a (1−x)1/3+g2/3b x1/3)3,

D12=
`gagb

g

(a−1)2

a
`x(1−x),

ga=
(1−x) a3g

x+(1−x) a3
, gb=

xg

x+(1−x) a3
.

fattr=Fattr/ONP kBT is the contribution due to attraction between the
particles:

fattr=−
1
2

g

Tg(x+(1−x) a3)
((1−x)2+2x(1−x) r+x2q). (C.3)

Here the following notations are introduced: g is packing density
(g=ga+gb, gi=pris

3
ii/6, ri=ONP/V is the number density of species i),

x is a concentration (x=ONbP/ONP), Tg=kBTs3 |f̃aa(0)|−1 p/6 is dimen-
sionless temperature.
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